Hexagonal Gyro-elastic lattice: Dispersion surfaces

M.Brun et al. (2019)

29th August 2019 43 / 59

Dispersion surfaces for $\alpha = 0.9$

Frequencies 3.79 and 4.02 (inside the pass band) can be lead to interfacial waveforms. 2 Frequency 3.95 (inside the stop band) can lead to edge modes.

M.Brun et al. (2019)

Gyro-elastic waveguides

29th August 2019 44 / 59

Interfacial waveforms along a zig-zag interface ($\alpha = 0.9$)

Interfacial waveforms ($\omega = 3.79$)

E

990

イロト イポト イヨト イヨ

Interfacial waveforms ($\omega = 4.02$)

E

990

イロト イポト イヨト イヨ

Interfacial waveforms along a zig-zag interface ($\alpha = 0.9$)

29th August 2019 48 / 59

Applications of gyro-elastic lattices: Topological protection

 $\alpha = 0.9, \Omega = \omega,$ Forcing

Forcing frequency is 3.95

M.Brun et al. (2019)

29th August 2019 49 / 59

A gyro-elastic topological insulator: transient simulation

M.Brun et al. (2019)

Gyro-elastic waveguides

29th August 2019 50 / 59

5900

프 🖌 🖌 프