Le séminaire hebdomadaire du laboratoire PMMH a lieu tous les vendredis à 11h, au premier étage Barre Cassan, campus Jussieu (plan).
Stéphane Perrard
Etienne Reyssat
Virgile Thiévenaz

PMMH
BARRE CASSAN
BAT A 1ER ETAGE CASE 18
7 QUAI SAINT BERNARD
75005 PARIS
France
Tel : (33) 1 40 79 45 22
Alexandre Darmon (EC2M, Gulliver, ESPCI)
Waltzing defects in cholesteric liquid crystal shells : interplay between topology and elasticity
Confining rod-like molecules, such as nematogens of liquid crystals, on a curved surface inevitably yields topological defects, which are singular points where the alignment between molecules can no longer be fulfilled. Remarkably, in the specific case of a nematic sphere, Poincaré stated that the sum of the topological charges of the defects must always be +2. Recent studies, led both at experimental and theoretical levels [1,2], have shown that in the case of nematic shells, three kinds of configuration are possible. Each of these configurations corresponds to different arrangements of defects that satisfy Poincaré's theorem. But much richer scenarios appear when playing with the shell thickness, since bulk effects start competing with surface effects. In particular, we show that inducing chirality in the liquid crystal can have a dramatic effect in the defect structure of the shell, where the ratio c between the cholesteric pitch p and the shell thickness h becomes an additional control parameter.
We present evidence of new defect structures, such as +3/2 charge defects, and then
focus on the specific configurations displaying two disclination lines of charge +1 and one disclination line of charge +2. We study in more details their intricate structures and show that the +2 configuration, commonly known as the Frank-Pryce structure, actually consists of two non-singular +1 lines that are winded around each other (see Fig. 1). These results match recent numerical simulations by Sec et al. [3] on cholesteric droplets. Moreover, we perform a detailed study of the transition between the 2(+1) and the +2 configurations and provide a theoretical explanation unveiling its governing mechanisms [4].
[1] Lopez-Leon, T., Koning, V., Devaiah, K. B. S., Vitelli, V., & Fernandez-Nieves, A.,
Nature Phys. 7 (2011).
[2] Vitelli, V. & Nelson D. R., Phys Rev. E 74 (2006).
[3] Sec, D., Porenta, T., Ravnik, M. & Zumer, S., Soft Matter 8 (2012).
[4] Darmon, A., Benzaquen, M., Dauchot, O. & Lopez-Leon, T., (in preparation)
Figure : Cholesteric shell observed between crossed polarizers. At the center two
+1 disclination lines twisted around each other can be observed.
Instructions générales pour les conférenciers
Le public du séminaire est très hétérogène (rien qu’au PMMH nous travaillons sur des thématiques très diverses, mécanique des fluides, des milieux granulaires, des solides, physique statistique, physique du mouillage, micro-fluidique, biophysique,...) l’objectif est donc de ne pas faire un séminaire trop spécialiste : au moins la première moitié du séminaire à un niveau accessible pour celui qui ne connaît rien sur le sujet.
Le séminaire a lieu à 11h. rendez-vous 15 minutes avant pour installer et tester la projection.
Le séminaire dure environ 45 minutes pour laisser un peu de temps pour discuter à la fin.
- Séminaires ESPCI-ENS de biophysique
- Séminaires du Département de Physique de l’ENS
- Séminaires du Laboratoire d’Hydrodynamique de l’X
- Séminaire de Mécanique d’Orsay (page web FAST)
- Séminaire de Mécanique d’Orsay (page web LIMSI)
- Séminaire de Mécanique des Fluides de l’Institut Jean le Rond d’Alembert
- Séminaires du laboratoire MSC, Paris VII
- Séminaires Gulliver
br >
br >