Le séminaire hebdomadaire du laboratoire PMMH a lieu tous les vendredis à 11h, au premier étage Barre Cassan, campus Jussieu (plan).
Stéphane Perrard
Etienne Reyssat
Virgile Thiévenaz

PMMH
BARRE CASSAN
BAT A 1ER ETAGE CASE 18
7 QUAI SAINT BERNARD
75005 PARIS
France
Tel : (33) 1 40 79 45 22
Séminaire PMMH - Florian Poydenot (ENS)
A gravity driven inverse cascade controls the size distribution of raindrops
The size distribution of raindrops follows a particularly simple form, measured over the last century. It is exponential, and the average diameter of raindrops increases with the intensity of the rain. However, this relationship is still poorly explained. The dependence of the mean diameter on intensity implies that the polydispersity of raindrops is controlled by collective effects, and not by the instability or stochastic evolution of individual drops. Here we show, based on first principles of hydrodynamics, that drop coalescence by gravity controls the size distribution of raindrops. Our theory adapts the concept of energy cascading through the scales of turbulence to the drop mass distribution. We derive the steady-state distribution attained when drops nucleate at a constant rate by solving for the condition of constant water mass flow through the scales, and compare it to existing experimental data.
A key aspect of the model is the effective collision cross section of the sedimenting drops : large drops fall faster than small ones and coalesce with them on their way. Paradoxically, the lubrication pressure due to the air film trapped between the drops diverges rapidly, preventing any collision. Here we improve the hydrodynamic description of collisions by considering both the long-range hydrodynamic interaction and the lubrication film that forms between the drops immediately before the collision. Two different mechanisms regulate the contact pressure divergence : the transition to a dilute gas regime in the lubrication film, when the gap is comparable to the mean free path of air, and the formation of a flow inside the drops by shear at their surface. We show that lubrication is responsible for a decrease in collision efficiency at the scale for which inertia and viscous dissipation are of comparable magnitude. Lubrication thus explains the relative stability of fogs and non-precipitating clouds formed of micrometer droplets. This opens the possibility to improve the description of cloud microphysics in atmospheric simulations.
Instructions générales pour les conférenciers
Le public du séminaire est très hétérogène (rien qu’au PMMH nous travaillons sur des thématiques très diverses, mécanique des fluides, des milieux granulaires, des solides, physique statistique, physique du mouillage, micro-fluidique, biophysique,...) l’objectif est donc de ne pas faire un séminaire trop spécialiste : au moins la première moitié du séminaire à un niveau accessible pour celui qui ne connaît rien sur le sujet.
Le séminaire a lieu à 11h. rendez-vous 15 minutes avant pour installer et tester la projection.
Le séminaire dure environ 45 minutes pour laisser un peu de temps pour discuter à la fin.
- Séminaires ESPCI-ENS de biophysique
- Séminaires du Département de Physique de l’ENS
- Séminaires du Laboratoire d’Hydrodynamique de l’X
- Séminaire de Mécanique d’Orsay (page web FAST)
- Séminaire de Mécanique d’Orsay (page web LIMSI)
- Séminaire de Mécanique des Fluides de l’Institut Jean le Rond d’Alembert
- Séminaires du laboratoire MSC, Paris VII
- Séminaires Gulliver
br >
br >