Bioinspired turbine blades offer new perspectives for wind energy

V. Cognet, S. Courrech du Pont, I. Dobrev, F. Massouh, B. Thiria ; Proc. Roy. Soc. A, 473, (2017)

Wind energy is becoming a significant alternative solution for future energy production. Modern turbines now benefit from engineering expertise, and a large variety of different models exists, depending on the context and needs. However, classical wind turbines are designed to operate within a narrow zone centred around their optimal working point. This limitation prevents the use of sites with variable wind to harvest energy, involving significant energetic and economic losses. Here, we present a new type of bioinspired wind turbine using elastic blades, which passively deform through the air loading and centrifugal effects. This work is inspired from recent studies on insect flight and plant reconfiguration, which show the ability of elastic wings or leaves to adapt to the wind conditions and thereby to optimize performance. We show that in the context of energy production, the reconfiguration of the elastic blades significantly extends the range of operating regimes using only passive, non-consuming mechanisms. The versatility of the new turbine model leads to a large increase of the converted energy rate, up to 35%. The fluid/elasticity mechanisms involved for the reconfiguration capability of the new blades are analysed in detail, using experimental observations and modelling.


Haut de page



À lire aussi...

Data-driven order reduction and velocity field reconstruction using neural networks : The case of a turbulent boundary layer

By Antonios Giannopoulos and Jean-Luc Aider in Physics of Fluids 32, 095117 (2020) ; https://doi.org/10.1063/5.0015870 We present a data-driven (…) 

> Lire la suite...

Effect of friction on the peeling test at zero-degrees

S. Ponce, J. Bico, B. Roman ; Soft Matter, 11, 9281-9290, (2015) We describe the peeling of an elastomeric strip adhering to a glass plate through (…) 

> Lire la suite...

 

Informations Pratiques

Laboratoire : 01 40 79 45 22
Directeur : Ramiro GODOY DIANA
Codirecteur : Laurent DUCHEMIN
Administratrice : Frédérique AUGER (01 40 79 45 22)
Gestionnaire : Claudette BAREZ (01 40 79 58 53)
Courriel : dir (arobase) pmmh.espci.fr