PMMH’s weekly seminar is held every Friday at 11 am (map)
Stéphane Perrard
Etienne Reyssat
Virgile Thiévenaz

PMMH
BARRE CASSAN
BAT A 1ER ETAGE CASE 18
7 QUAI SAINT BERNARD
75005 PARIS
France
Tel : (33) 1 40 79 45 22
Séminaire PMMH - Lorraine Montel (UPMC)
Emulsion droplets as a model biomimetic system
Emulsion droplets recapitulate the deformability and surface fluidity of biological objects, in a simpler and tunable fashion. Thus, they can be used as a model biomimetic system to study cell-cell interactions. During this talk, I will demonstrate this use in two different systems : the study of phagocytosis, and the study of the role adhesion plays in tissues.
During phagocytosis, immune cells identify, internalize and digest foreign objects or dying cells, a process essential for immunity, but also for the homeostasis of tissues. Phagocytic cells are able to internalize objects bigger than themselves, yet, how the size of their target impacts their ability to phagocyte remains a controversial question. Using polydisperse emulsions and a new automated analysis method, we could show that the phagocytes do not select the size of their targets. Instead, they are limited in the total surface they can engulf, and can thus internalize less of the bigger objets. Moreover, this surface limitation is common to diverse types of cells, of ligands and of objects across all ranges of sizes.
During morphogenesis, cell differenciate and reorganize acquire their shape and function. In addition to biological cues, the mechanical properties of cells and their interactions are essential to this process. Yet, in biological systems, it is challenging to isolate the role of one parameter. Adhesive emulsion droplets can also be used as a model system to question the role of adhesion in tissue mechanics, without the interference of biochemical signalling, feedback loops and active processes. We sheared an adhesive emulsion in a microfluidic constriction, and observed with confocal microscopy how adhesion impacted the shape of droplets and their rearrangements. In dynamics, we found that T1 rearrangement events occur more slowly and at much higher deformation in the presence of adhesion. At a global scale, the topology of rearrangements is not impacted, however, the adhesion creates a global polarization of the deformation in the direction of the flow.
The audience is composed of people with rather heterogeneous backgrounds including specialists in solids, fluids, granular flows, statistical physics... so the idea is to keep your talk understandable by people not necessarily working in your field... The seminar time slot runs from 11am to noon so the best is to make the talk last around 45 minutes to leave some time for discussion.
- Séminaires ESPCI-ENS de biophysique
- Séminaires du Département de Physique de l’ENS
- Séminaires du Laboratoire d’Hydrodynamique de l’X
- Séminaire de Mécanique d’Orsay (page web FAST)
- Séminaire de Mécanique d’Orsay (page web LIMSI)
- Séminaire de Mécanique des Fluides de l’Institut Jean le Rond d’Alembert
- Séminaires du laboratoire MSC, Paris VII
- Séminaires Gulliver
br >
br >