PMMH’s weekly seminar is held every Friday at 11 am (map)
Stéphane Perrard
Etienne Reyssat
Virgile Thiévenaz

PMMH
BARRE CASSAN
BAT A 1ER ETAGE CASE 18
7 QUAI SAINT BERNARD
75005 PARIS
France
Tel : (33) 1 40 79 45 22
Scott Waitukaitis (University of Chicago)
Impact-Activated Solidification of Dense Suspensions
Shear-thickening, non-Newtonian fluids have typically been investigated under steady-state conditions. This approach has produced two pictures for suspension response to imposed forcing. In the weak shear-thickening picture, the response is typically attributed to the hydrodynamic interactions giving rise to hydroclusters, small groups of particles interacting through lubrication forces. At the other end of the spectrum, in the discontinuous shear-thickening regime, the response can be seen as a system-wide jamming that is ultimately limited in strength by the system boundaries. While these steady-state pictures have proven extremely useful, some of the most interesting phenomena associated with dense suspensions is transient and local in character. A prototypical example is the extraordinarily large impact resistance of dense suspensions such as cornstarch and water. When poked lightly these materials respond like a fluid, but when punched or kicked they seem to temporarily ``solidify'' and provide enormous resistance to the motion of the impacting object. Using an array of experimental techniques, including high-speed video, embedded force and acceleration sensing, and x-ray imaging, we are able to investigate the dynamic details this process as it unfolds. We find that an impacting object drives the rapid growth of a jammed, solid-like region directly below the impact site. Being coupled to the surrounding fluid by grain-mediated lubrication forces, this creates substantial peripheral flow and ultimately leads to the sudden extraction of the impactor's momentum. With a simple jamming picture to describe the solidification and an added mass model to explain the force on the rod, we are able to explain the origin of the large impact force. These findings highlight the importance of the non-equilibrium character of dense suspensions near jamming and might serve as a bridge between the weak and discontinuous shear-thickening pictures.
- Seminar archive
- Recent seminars
- Seminars
Seminars (4)
-
Séminaire PMMH - Francesca Borghi Università degli Studi di Milano
Vendredi 20 juin de 11h00 à 12h00 - Salle réunion PMMH 1
REPROGRAMMABLE HARDWARE FOR DATA PROCESSING AT THE EDGE : A NEW COMPUTING PARADIGM BASED ON NEUROMORPHIC SYSTEMS
The brain's ability to perform efficient and fault-tolerant data processing is strongly related with its peculiar interconnected adaptive architecture, based on redundant neural circuits interacting at different scales. By emulating the brain's processing and learning mechanisms, computing technologies strive to (…) -
Séminaire PMMH - Francesca Borghi Università degli Studi di Milano
Vendredi 20 juin de 11h00 à 12h00 - Salle réunion PMMH 1
REPROGRAMMABLE HARDWARE FOR DATA PROCESSING AT THE EDGE : A NEW COMPUTING PARADIGM BASED ON NEUROMORPHIC SYSTEMS
The brain's ability to perform efficient and fault-tolerant data processing is strongly related with its peculiar interconnected adaptive architecture, based on redundant neural circuits interacting at different scales. By emulating the brain's processing and learning mechanisms, computing technologies strive to (…) -
Séminaire PMMH - Salvatore Federico (University of Calgary, Canada)
Vendredi 4 juillet de 11h00 à 12h00 - Salle réunion PMMH 1
Continuum Mechanics of Hydrated Fibre-Reinforced Soft Tissues
Biological tissues can be represented as bi-phasic continua, with a porous solid phase saturated by an interstitial fluid and reinforced by collagen fibers. This lecture will give an overview of the modelling techniques for fibre-reinforced porous composite materials with statistical orientation of the fibers. Both (…) -
Séminaire PMMH - Salvatore Federico (University of Calgary, Canada)
Vendredi 4 juillet de 11h00 à 12h00 - Salle réunion PMMH 1
Continuum Mechanics of Hydrated Fibre-Reinforced Soft Tissues
Biological tissues can be represented as bi-phasic continua, with a porous solid phase saturated by an interstitial fluid and reinforced by collagen fibers. This lecture will give an overview of the modelling techniques for fibre-reinforced porous composite materials with statistical orientation of the fibers. Both (…)
The audience is composed of people with rather heterogeneous backgrounds including specialists in solids, fluids, granular flows, statistical physics... so the idea is to keep your talk understandable by people not necessarily working in your field... The seminar time slot runs from 11am to noon so the best is to make the talk last around 45 minutes to leave some time for discussion.
- Séminaires ESPCI-ENS de biophysique
- Séminaires du Département de Physique de l’ENS
- Séminaires du Laboratoire d’Hydrodynamique de l’X
- Séminaire de Mécanique d’Orsay (page web FAST)
- Séminaire de Mécanique d’Orsay (page web LIMSI)
- Séminaire de Mécanique des Fluides de l’Institut Jean le Rond d’Alembert
- Séminaires du laboratoire MSC, Paris VII
- Séminaires Gulliver
br >
br >