PMMH’s weekly seminar is held every Friday at 11 am (map)
Stéphane Perrard
Etienne Reyssat
Virgile Thiévenaz

PMMH
BARRE CASSAN
BAT A 1ER ETAGE CASE 18
7 QUAI SAINT BERNARD
75005 PARIS
France
Tel : (33) 1 40 79 45 22
Séminaire PMMH - Alexander Alexeev (Georgia Tech)
Biomimetic flapping and beating in viscous fluid
We probe interactions of elastic structures with viscous fluids to investigate biomimetic approaches for fluid manipulation. We consider two systems : fish-like elastic fines and artificial cilia. Fish displays incredible agility and speed using oscillating flexible fins. We represent fins as thin elastic plates actuated to oscillate at the leading edge. We explore the effects of fin elasticity and shape on swimming velocity and economy. We show that structural resonance yields faster swimming and that fin tapering enhances swimming economy for a wide range of actuation frequencies. We also probe the propulsion of swimmers actuated by a distributed internal bending moment that mimics fish muscles. We show that swimming performance of such active swimmers greatly benefits from passive elastic attachments at the swimmer trailing edge. In our second example, we probe to design arrays of artificial magnetic cilia that mimic beating of natural cilia. Due to their small size, cilia operate in low Reynolds number regimes, where a non-reciprocal beating is required to produce a net fluid flow. Our artificial cilia formed from thin ferromagnetic films and actuated by a uniformly rotating magnetic field display distinctly different forward and recovery strokes. We probe the utility of such cilia for microfluidic pumping and design arrays of beating cilia that produce metachronal waves. We also show how magnetic cilia can be individually immobilized by integrating electrostatic actuation into a ciliary array.
- Seminar archive
- Recent seminars
- Seminars
Seminars (4)
-
Séminaire PMMH - Francesca Borghi Università degli Studi di Milano
Vendredi 20 juin de 11h00 à 12h00 - Salle réunion PMMH 1
REPROGRAMMABLE HARDWARE FOR DATA PROCESSING AT THE EDGE : A NEW COMPUTING PARADIGM BASED ON NEUROMORPHIC SYSTEMS
The brain's ability to perform efficient and fault-tolerant data processing is strongly related with its peculiar interconnected adaptive architecture, based on redundant neural circuits interacting at different scales. By emulating the brain's processing and learning mechanisms, computing technologies strive to (…) -
Séminaire PMMH - Francesca Borghi Università degli Studi di Milano
Vendredi 20 juin de 11h00 à 12h00 - Salle réunion PMMH 1
REPROGRAMMABLE HARDWARE FOR DATA PROCESSING AT THE EDGE : A NEW COMPUTING PARADIGM BASED ON NEUROMORPHIC SYSTEMS
The brain's ability to perform efficient and fault-tolerant data processing is strongly related with its peculiar interconnected adaptive architecture, based on redundant neural circuits interacting at different scales. By emulating the brain's processing and learning mechanisms, computing technologies strive to (…) -
Séminaire PMMH - Salvatore Federico (University of Calgary, Canada)
Vendredi 4 juillet de 11h00 à 12h00 - Salle réunion PMMH 1
Continuum Mechanics of Hydrated Fibre-Reinforced Soft Tissues
Biological tissues can be represented as bi-phasic continua, with a porous solid phase saturated by an interstitial fluid and reinforced by collagen fibers. This lecture will give an overview of the modelling techniques for fibre-reinforced porous composite materials with statistical orientation of the fibers. Both (…) -
Séminaire PMMH - Salvatore Federico (University of Calgary, Canada)
Vendredi 4 juillet de 11h00 à 12h00 - Salle réunion PMMH 1
Continuum Mechanics of Hydrated Fibre-Reinforced Soft Tissues
Biological tissues can be represented as bi-phasic continua, with a porous solid phase saturated by an interstitial fluid and reinforced by collagen fibers. This lecture will give an overview of the modelling techniques for fibre-reinforced porous composite materials with statistical orientation of the fibers. Both (…)
The audience is composed of people with rather heterogeneous backgrounds including specialists in solids, fluids, granular flows, statistical physics... so the idea is to keep your talk understandable by people not necessarily working in your field... The seminar time slot runs from 11am to noon so the best is to make the talk last around 45 minutes to leave some time for discussion.
- Séminaires ESPCI-ENS de biophysique
- Séminaires du Département de Physique de l’ENS
- Séminaires du Laboratoire d’Hydrodynamique de l’X
- Séminaire de Mécanique d’Orsay (page web FAST)
- Séminaire de Mécanique d’Orsay (page web LIMSI)
- Séminaire de Mécanique des Fluides de l’Institut Jean le Rond d’Alembert
- Séminaires du laboratoire MSC, Paris VII
- Séminaires Gulliver
br >
br >