S. Ponce, J. Bico, B. Roman ; Soft Matter, 11, 9281-9290, (2015)
We describe the peeling of an elastomeric strip adhering to a glass plate through van der Waals interactions in the limit of a zero peeling angle. In contrast to classical studies that predict a saturation of the pulling force, in this lap test configuration the force continuously increases, while a sliding front propagates along the tape. The strip eventually detaches from the substrate when the front reaches its end. Although the evolution of the force is reminiscent of recent studies involving a compliant adhesive coupled with a rigid backing, the progression of a front is in contradiction with such a mechanism. To interpret this behavior, we estimate the local shear stress at the interface by monitoring the deformation of the strip. Our results are consistent with a nearly constant friction stress in the sliding zone in agreement with other experimental observations where adhesion and friction are observed.