Giant ripples on comet 67P/Churyumov–Gerasimenko sculpted by sunset thermal wind

Pan Jia, Bruno Andreotti, and Philippe Claudin, PNAS (2017)

Abstract:
Explaining the unexpected presence of dune-like patterns at the surface of the comet 67P/Churyumov–Gerasimenko requires conceptual and quantitative advances in the understanding of surface and outgassing processes. We show here that vapor flow emitted by the comet around its perihelion spreads laterally in a surface layer, due to the strong pressure difference between zones illuminated by sunlight and those in shadow. For such thermal winds to be dense enough to transport grains—10 times greater than previous estimates—outgassing must take place through a surface porous granular layer, and that layer must be composed of grains whose roughness lowers cohesion consistently with contact mechanics. The linear stability analysis of the problem, entirely tested against laboratory experiments, quantitatively predicts the emergence of bedforms in the observed wavelength range and their propagation at the scale of a comet revolution. Although generated by a rarefied atmosphere, they are paradoxically analogous to ripples emerging on granular beds submitted to viscous shear flows. This quantitative agreement shows that our understanding of the coupling between hydrodynamics and sediment transport is able to account for bedform emergence in extreme conditions and provides a reliable tool to predict the erosion and accretion processes controlling the evolution of small solar system bodies.


Top



See also...

Data-driven order reduction and velocity field reconstruction using neural networks: The case of a turbulent boundary layer

By Antonios Giannopoulos and Jean-Luc Aider in Physics of Fluids 32, 095117 (2020); https://doi.org/10.1063/5.0015870 We present a data-driven (...) 

> More...

Prediction of the dynamics of a backward-facing step flow using focused time-delay neural networks and particle image velocimetry data-sets

By Antonios Giannopoulos, Jean-Luc Aider in International Journal of Heat and Fluid Flow The objective of this experimental work was to evaluate (...) 

> More...

 

Practical information

Laboratoire : 01 40 79 45 22
Directeur : Damien Vandembroucq
Codirecteur : Philippe Petitjeans
Administratrice : Frédérique Auger (01 40 79 45 22)
Gestionnaire : Claudette Barez (01 40 79 58 53)
Courriel : dir (arobase) pmmh.espci.fr