Periodicity in fields of elongating dunes

By C. Gadal, C. Narteau, S. Courrech du Pont, O. Rozier and P. Claudin in Geology (2020) 48 (4): 343–347.

Dune fields are commonly associated with periodic patterns that are among the most recognizable landscapes on Earth and other planetary bodies. However, in zones of limited sediment supply, where periodic dunes elongate and align in the direction of the resultant sand flux, there has been no attempt to explain the emergence of such a regular pattern. Here, we show, by means of numerical simulations, that the elongation growth mechanism does not produce a pattern with a specific wavelength. Periodic elongating dunes appear to be a juxtaposition of individual structures, the arrangement of which is due to regular landforms at the border of the field acting as boundary conditions. This includes, among others, dune patterns resulting from bed instability, or the crestline reorganization induced by dune migration. The wavelength selection in fields of elongating dunes therefore reflects the interdependence of dune patterns over the course of their evolution.


Top



See also...

A unified model of ripples and dunes in water and planetary environments

Orencio Duran Vinent, Bruno Andreotti, Philippe Claudin and Christian Winter, Nature Geoscience (2019) Subaqueous and aeolian bedforms are (...) 

> More...

Faraday wave lattice as an elastic metamaterial

L. Domino, M. Tarpin, S. Patinet, and A. Eddi ; Phys. Rev. E 93, 050202(R), (2016) Metamaterials enable the emergence of novel physical (...) 

> More...

 

Practical information

Laboratoire : 01 40 79 45 22
Directeur : Damien Vandembroucq
Codirecteur : Philippe Petitjeans
Administratrice : Frédérique Auger (01 40 79 45 22)
Gestionnaire : Claudette Barez (01 40 79 58 53)
Courriel : dir (arobase) pmmh.espci.fr